Origin of the Surface Facet Dependence in the Oxidative Etching of the Diamond (111) and (100) Surfaces from First-Principles Calculations

John Isaac G. Enriquez, Takahiro Yamasaki, Masato Michiuchi, Kouji Inagaki, Masaaki Geshi, Ikutaro Hamada, Yoshitada Morikawa

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

This work elucidates the surface facet dependence on the oxygen adsorption and oxidized surface morphology of the diamond (111) and (100) surfaces to give insights that will improve the polishing, etching, and fabrication of diamond devices. We used spin-polarized density functional theory to systematically simulate the O adsorption and CO and CO2 desorption reactions from pristine and etched diamond (111) and (100) surfaces. The results show that the surface facet dependence is caused by two factors: (1) the difference in the reactivity of the O2 and (2) the difference in the carbonyl orientation of the O-terminated surfaces. The O2 adsorption and activation energies on the C(111)-(2 × 1) surface are weaker and higher, respectively, compared to those on the C(100)-(2 × 1) surface. Moreover, the O2 adsorption energy on the C(111)-(2 × 1) weakens with O2 coverage. At monolayer O coverage, the carbonyl groups on the C(111)-(1 × 1):O surface have an inclined orientation which causes high steric repulsion between adjacent O atoms. The repulsion decreases with less neighboring molecules, leading to staggered etching, formation of islands, and loss of well-defined crystallographic orientation of the surface atoms. For the C(100)-(1 × 1):O surface, the carbonyl groups have an upright orientation and have low steric repulsion. The CO desorption activation energy is lower near an existing vacancy, leading to rowwise etching, which preserves the crystallographic orientation of the surface atoms.

Original languageEnglish (US)
Pages (from-to)6294-6308
Number of pages15
JournalJournal of Physical Chemistry C
Volume128
Issue number15
DOIs
StatePublished - Apr 18 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Origin of the Surface Facet Dependence in the Oxidative Etching of the Diamond (111) and (100) Surfaces from First-Principles Calculations'. Together they form a unique fingerprint.

Cite this