Orientability and real Seiberg-Witten invariants

Gang Tian, Shuguang Wang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


We investigate the Seiberg-Witten theory in the presence of real structures. Certain conditions are obtained so that integer-valued real Seiberg-Witten invariants can be defined. In general, we study properties of the real Seiberg-Witten projection map from the point of view of Fredholm map degrees.

Original languageEnglish (US)
Pages (from-to)573-604
Number of pages32
JournalInternational Journal of Mathematics
Issue number5
StatePublished - May 2009

All Science Journal Classification (ASJC) codes

  • General Mathematics


  • Lifted real structure
  • Orientability of moduli space
  • Real Seiberg-Witten theory
  • Real invariant
  • Real projection map


Dive into the research topics of 'Orientability and real Seiberg-Witten invariants'. Together they form a unique fingerprint.

Cite this