Organic transistors with high thermal stability for medical applications

Kazunori Kuribara, He Wang, Naoya Uchiyama, Kenjiro Fukuda, Tomoyuki Yokota, Ute Zschieschang, Cherno Jaye, Daniel Fischer, Hagen Klauk, Tatsuya Yamamoto, Kazuo Takimiya, Masaaki Ikeda, Hirokazu Kuwabara, Tsuyoshi Sekitani, Yueh Lin Loo, Takao Someya

Research output: Contribution to journalArticlepeer-review

287 Scopus citations

Abstract

The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b: 2'3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm 2 V-1 s-1 within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

Original languageEnglish (US)
Article number723
JournalNature communications
Volume3
DOIs
StatePublished - 2012

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Organic transistors with high thermal stability for medical applications'. Together they form a unique fingerprint.

Cite this