Abstract
The recent realization of a coherent interface between a single electron in a silicon quantum dot and a single photon trapped in a superconducting cavity opens the way for implementing photon-mediated two-qubit entangling gates. In order to couple a spin to the cavity electric field, some type of spin-charge hybridization is needed, which impacts spin control and coherence. In this work we propose a cavity-mediated two-qubit gate and calculate cavity-mediated entangling gate fidelities in the dispersive regime, accounting for errors due to the spin-charge hybridization, as well as photon- and phonon-induced decays. By optimizing the degree of spin-charge hybridization, we show that two-qubit gates mediated by cavity photons are capable of reaching fidelities exceeding 90% in present-day device architectures. High iswap gate fidelities are achievable even in the presence of charge noise at the level of 2μeV.
Original language | English (US) |
---|---|
Article number | 081412 |
Journal | Physical Review B |
Volume | 100 |
Issue number | 8 |
DOIs | |
State | Published - Aug 29 2019 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics