Optimization of stochastic strategies for spatially inhomogeneous robot swarms: A case study in commercial pollination

Spring Berman, Radhika Nagpal, Ádám Halász

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

We present a scalable approach to optimizing robot control policies for a target collective behavior in a spatially inhomogeneous robotic swarm. The approach can incorporate robot feedback to maintain system performance in an unknown environmental flow field. We consider systems in which the robots follow both deterministic and random motion and transition stochastically between tasks. Our methodology is based on an abstraction of the swarm to a macroscopic continuous model, whose dimensionality is independent of the population size, that describes the expected time evolution of swarm subpopulations over a discretization of the environment. We incorporate this model into a stochastic optimization method and map the optimized model parameters onto the robot motion and task transition control policies to achieve a desired global objective. We illustrate our methodology with a scenario in which the behaviors of a swarm of robotic bees are optimized for both uniform and nonuniform pollination of a blueberry field, including in the presence of an unknown wind.

Original languageEnglish (US)
Title of host publicationIROS'11 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
Subtitle of host publicationCelebrating 50 Years of Robotics
Pages3923-3930
Number of pages8
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11 - San Francisco, CA, United States
Duration: Sep 25 2011Sep 30 2011

Publication series

NameIEEE International Conference on Intelligent Robots and Systems

Conference

Conference2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11
Country/TerritoryUnited States
CitySan Francisco, CA
Period9/25/119/30/11

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Optimization of stochastic strategies for spatially inhomogeneous robot swarms: A case study in commercial pollination'. Together they form a unique fingerprint.

Cite this