Optimization of capsule dopant levels to improve fuel areal density*

D. E. Hinkel, T. Döppner, L. P. Masse, K. Widmann, L. Divol, B. Bachmann, L. F. Berzak Hopkins, S. LePape, C. R. Weber, S. A. MacLaren, A. B. Zylstra, J. E. Ralph, L. R. Benedetti, A. S. Moore, C. A. Thomas, D. T. Casey, V. A. Smalyuk, H. F. Robey, P. M. Celliers, M. J. MacDonaldC. M. Krauland, D. B. Thorn, M. D. Rosen, P. K. Patel, B. J. MacGowan, M. B. Schneider, D. S. Clark, A. E. Pak, M. J. Edwards, O. L. Landen, D. A. Callahan, O. A. Hurricane

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Fuel areal density (ρR) of all recent indirectly driven, cryogenically-layered DT implosions at the National Ignition Facility (NIF) show a deficit when compared to simulations. Across all designs, experimental ρR is lower than in 1D simulations without alpha energy or momentum deposition. A series of layered implosions were fielded at NIF to assess the impact of fuel-ablator instability, as caused by M-band preheat, on lower-than-expected fuel areal density. The stability of the fuel-ablator interface is modified by varying the Atwood number through a series of experiments where capsules were fielded with different ablator dopant levels. A key finding of this campaign is that optimization of 1D physics (shock timing) dominates stabilization of the fuel-ablator interface.

Original languageEnglish (US)
Article number100884
JournalHigh Energy Density Physics
Volume37
DOIs
StatePublished - Nov 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Radiation
  • Nuclear and High Energy Physics

Keywords

  • Fuel Areal Density
  • Fuel-Ablator Interface Mix
  • Hydrodynamic Stability
  • Indirect Drive
  • Inertial Confinement Fusion

Fingerprint

Dive into the research topics of 'Optimization of capsule dopant levels to improve fuel areal density*'. Together they form a unique fingerprint.

Cite this