Optimal structural design of mannosylated nanocarriers for macrophage targeting

Peiming Chen, Xiaoping Zhang, Lee Jia, Robert K. Prud'Homme, Zoltan Szekely, Patrick J. Sinko

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Macrophages are involved in a number of diseases, such as HIV infection/AIDS, tuberculosis, tumor development and atherosclerosis. Macrophages possess several cell surface receptors (e.g., the mannose receptor, MR) that may serve as drug delivery cellular portals for nanocarriers (NCs). In this study, the optimal structural configuration for cell uptake of mannosylated poly(ethylene glycol)-conjugate type NCs was determined. A series of NCs were synthesized to systematically evaluate the effects of the number of mannose units (Man), the PEG carrier size and the mPEG spacer length between adjacent mannose units on NC uptake into MR-expressing J774.E murine macrophage-like cells. Among NCs with 0, 1, 2 or 4 units of mannose, the uptake of (Man)2-NC was the highest, suggesting a trade-off between avidity and NC-MR clustering on the cell surface that sterically hinders endocytosis. This optimal (Man)2-NC configuration was built into subsequent NCs to optimize the other two parameters, PEG carrier size and spacer length. NCs with 0, 5, 12, 20, 30 or 40 kDa linear PEG carriers showed an inverse relationship between PEG size and uptake. The 12 kDa PEG carrier was chosen for investigating the third parameter, the Man-Man distance, since it may represent the best trade off (i.e., tissue penetration vs. systemic clearance) for in vivo macrophage targeting. Three (Man)2-PEG12kDa NCs with different Man-Man distances (39, 56 or 89 Å) were synthesized. The uptake of the NC with the 56 Å distance between mannoses was four- and two-fold higher than NCs with 39 Å and 89 Å distances, respectively. Confocal microscopy confirmed that the optimized (Man)2-PEG12kDa NC with the 56 Å Man-Man distance was internalized via endocytosis consistent with temperature-dependent active uptake. In conclusion, the optimal NC structural parameters for targeting the MR on macrophage-like J774.E cells are (i) a small PEG polymer carrier, (ii) two mannose units per NC and (iii) a 56 Å distance between adjacent mannose units.

Original languageEnglish (US)
Pages (from-to)341-349
Number of pages9
JournalJournal of Controlled Release
Volume194
DOIs
StatePublished - Nov 28 2014

All Science Journal Classification (ASJC) codes

  • Pharmaceutical Science

Keywords

  • Drug delivery
  • HIV-1
  • Ligand design
  • Mannose receptor
  • Nanocarrier

Fingerprint Dive into the research topics of 'Optimal structural design of mannosylated nanocarriers for macrophage targeting'. Together they form a unique fingerprint.

Cite this