Optimal recovery from microburst wind shear

Sandeep S. Mulgund, Robert F. Stengel

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


The flight path of a twin-jet transport aircraft is optimized in a microburst encounter during approach to landing. The objective is to execute an escape maneuver that maintains safe ground clearance, establishes a positive climb rate as soon as possible after the abort is triggered, and maintains an adequate stall margin during the climb out. A cost function penalizing rate of climb deviations from a nominal value and rate of elevator deflection produces qualitatively good results in a variety of microburst encounters. The optimal maneuver is a gradual pitch-up that ceases near the core of the microburst, followed by a slight reduction in pitch attitude in the tailwind area of the microburst. A minimum airspeed constraint in the optimization prevents excessive airspeed loss in very severe microbursts. The aircraft equations of motion include short-period dynamics, so that the optimization produces the control surface deflections required to achieve the optimal flight paths.

Original languageEnglish (US)
Pages (from-to)1010-1017
Number of pages8
JournalJournal of Guidance, Control, and Dynamics
Issue number6
StatePublished - Nov 1993

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Aerospace Engineering
  • Space and Planetary Science
  • Electrical and Electronic Engineering
  • Applied Mathematics


Dive into the research topics of 'Optimal recovery from microburst wind shear'. Together they form a unique fingerprint.

Cite this