Abstract
Plant hydraulic traits have been conjectured to be coordinated, thereby providing plants with a balanced hydraulic system that protects them from cavitation while allowing an efficient transport of water necessary for photosynthesis. In particular, observations suggest correlations between the water potentials at which xylem cavitation impairs water movement and the one at stomatal closure, and between maximum xylem and stomatal conductances, begging the question as to whether such coordination emerges as an optimal water-use strategy under unpredictable rainfall. Here mean transpiration <E> is used as a proxy for long-term plant fitness and its variations as a function of the water potentials at 50% loss of stem conductivity due to cavitation and at 90% stomatal closure are explored. It is shown that coordination between these hydraulic traits is necessary to maximize <E>, with rainfall patterns altering the optimal range of trait values. In contrast, coordination between ecosystem-level conductances appears not necessary to maximize <E>. The optimal trait ranges are wider under drier than under mesic conditions, suggesting that in semiarid systems different water use strategies may be equally successful. Comparison with observations across species from a range of ecosystems confirms model predictions, indicating that the coordinated functioning of plant organs might indeed emerge from an optimal response to rainfall variability. Key Points Plant hydraulic traits control mean transpiration and hence plant fitness Coordination among plant hydraulic traits maximizes mean transpiration Optimal coordination is tighter in mesic climates or with intermittent rain
Original language | English (US) |
---|---|
Pages (from-to) | 5379-5394 |
Number of pages | 16 |
Journal | Water Resources Research |
Volume | 50 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2014 |
All Science Journal Classification (ASJC) codes
- Water Science and Technology
Keywords
- hydraulic trait coordination
- soil-plant-atmosphere continuum
- stochastic rainfall
- stomatal conductance
- transpiration
- xylem cavitation