TY - GEN
T1 - Online Control for Meta-optimization
AU - Chen, Xinyi
AU - Hazan, Elad
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Choosing the optimal hyperparameters, including the learning rate and momentum, for specific optimization instances is a significant yet nonconvex challenge. This makes conventional iterative techniques such as hypergradient descent insufficient in obtaining global optimality guarantees in general. We consider the more general task of meta-optimization - online learning of the best optimization algorithm given problem instances. For this task, a novel approach based on control theory is introduced. We show how meta-optimization can be formulated as an optimal control problem, departing from existing literature that use stability-based methods to study optimization. Our approach leverages convex relaxation techniques in the recently-proposed nonstochastic control framework to overcome the challenge of nonconvexity, and obtains regret guarantees vs. the best offline solution. This guarantees that in meta-optimization, we can learn a method that attains convergence comparable to that of the best optimization method in hindsight from a class of methods.
AB - Choosing the optimal hyperparameters, including the learning rate and momentum, for specific optimization instances is a significant yet nonconvex challenge. This makes conventional iterative techniques such as hypergradient descent insufficient in obtaining global optimality guarantees in general. We consider the more general task of meta-optimization - online learning of the best optimization algorithm given problem instances. For this task, a novel approach based on control theory is introduced. We show how meta-optimization can be formulated as an optimal control problem, departing from existing literature that use stability-based methods to study optimization. Our approach leverages convex relaxation techniques in the recently-proposed nonstochastic control framework to overcome the challenge of nonconvexity, and obtains regret guarantees vs. the best offline solution. This guarantees that in meta-optimization, we can learn a method that attains convergence comparable to that of the best optimization method in hindsight from a class of methods.
UR - http://www.scopus.com/inward/record.url?scp=85189644640&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85189644640&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85189644640
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
A2 - Oh, A.
A2 - Neumann, T.
A2 - Globerson, A.
A2 - Saenko, K.
A2 - Hardt, M.
A2 - Levine, S.
PB - Neural information processing systems foundation
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -