On the statistical limits of convex relaxations: A case study

Zhaoran Wang, Quanquan Gu, Han Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge probability estimation for stochastic block model. We exploit the sum-of-squares relaxation hierarchy to sharply characterize the limits of a broad class of convex relaxations. Our result shows statistical optimality needs to be compromised for achieving computational tractability using convex relaxations. Compared with existing results on computational lower bounds for statistical problems, which consider general polynomialtime algorithms and rely on computational hardness hypotheses on problems like planted clique detection, our theory focuses on a broad class of convex relaxations and does not rely on unproven hypotheses.

Original languageEnglish (US)
Title of host publication33rd International Conference on Machine Learning, ICML 2016
EditorsKilian Q. Weinberger, Maria Florina Balcan
PublisherInternational Machine Learning Society (IMLS)
Pages2055-2067
Number of pages13
ISBN (Electronic)9781510829008
StatePublished - 2016
Event33rd International Conference on Machine Learning, ICML 2016 - New York City, United States
Duration: Jun 19 2016Jun 24 2016

Publication series

Name33rd International Conference on Machine Learning, ICML 2016
Volume3

Other

Other33rd International Conference on Machine Learning, ICML 2016
Country/TerritoryUnited States
CityNew York City
Period6/19/166/24/16

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'On the statistical limits of convex relaxations: A case study'. Together they form a unique fingerprint.

Cite this