TY - JOUR
T1 - On the polynomial szemerédi theorem in finite fields
AU - Peluse, Sarah
N1 - Publisher Copyright:
© 2019.
PY - 2019/4/1
Y1 - 2019/4/1
N2 - Let P 1 ; . . . ; P m ∈ Z[y] be any linearly independent polynomials with zero constant term. We show that there exists γ > 0 such that any subset of F q of size at least q 1-γ contains a nontrivial polynomial progression x,x+P 1 (y); . . . . x+P m (y) provided that the characteristic of F q is large enough.
AB - Let P 1 ; . . . ; P m ∈ Z[y] be any linearly independent polynomials with zero constant term. We show that there exists γ > 0 such that any subset of F q of size at least q 1-γ contains a nontrivial polynomial progression x,x+P 1 (y); . . . . x+P m (y) provided that the characteristic of F q is large enough.
UR - http://www.scopus.com/inward/record.url?scp=85063616733&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063616733&partnerID=8YFLogxK
U2 - 10.1215/00127094-2018-0051
DO - 10.1215/00127094-2018-0051
M3 - Article
AN - SCOPUS:85063616733
SN - 0012-7094
VL - 168
SP - 749
EP - 774
JO - Duke Mathematical Journal
JF - Duke Mathematical Journal
IS - 5
ER -