TY - JOUR
T1 - On the higher dimensional harmonic analog of the Levinson log log theorem
AU - Logunov, Alexander
N1 - Publisher Copyright:
© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.
PY - 2014
Y1 - 2014
N2 - Let M: (0, 1)→[. e, +. ∞) be a decreasing function such that {intercalate}01log log M(y)dy<+∞. Consider the set HM of all functions u harmonic in P:={(x,y):x∈n-1,y∈,|x|<1,|y|<1} and satisfying |. u(. x, y)|. ≤. M(|. y|). We prove that HM is a normal family in P.
AB - Let M: (0, 1)→[. e, +. ∞) be a decreasing function such that {intercalate}01log log M(y)dy<+∞. Consider the set HM of all functions u harmonic in P:={(x,y):x∈n-1,y∈,|x|<1,|y|<1} and satisfying |. u(. x, y)|. ≤. M(|. y|). We prove that HM is a normal family in P.
UR - http://www.scopus.com/inward/record.url?scp=84927696388&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84927696388&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2014.09.019
DO - 10.1016/j.crma.2014.09.019
M3 - Article
AN - SCOPUS:84927696388
SN - 1631-073X
VL - 352
SP - 889
EP - 893
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 11
ER -