On the convergence and robustness of training GaNs with regularized optimal transport

Maziar Sanjabi, Meisam Razaviyayn, Jimmy Ba, Jason D. Lee

Research output: Contribution to journalConference articlepeer-review

21 Scopus citations

Abstract

Generative Adversarial Networks (GANs) are one of the most practical methods for learning data distributions. A popular GAN formulation is based on the use of Wasserstein distance as a metric between probability distributions. Unfortunately, minimizing the Wasserstein distance between the data distribution and the generative model distribution is a computationally challenging problem as its objective is non-convex, non-smooth, and even hard to compute. In this work, we show that obtaining gradient information of the smoothed Wasserstein GAN formulation, which is based on regularized Optimal Transport (OT), is computationally effortless and hence one can apply first order optimization methods to minimize this objective. Consequently, we establish theoretical convergence guarantee to stationarity for a proposed class of GAN optimization algorithms. Unlike the original non-smooth formulation, our algorithm only requires solving the discriminator to approximate optimality. We apply our method to learning MNIST digits as well as CIFAR-10 images. Our experiments show that our method is computationally efficient and generates images comparable to the state of the art algorithms given the same architecture and computational power.

Original languageEnglish (US)
Pages (from-to)7091-7101
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - Jan 1 2018
Externally publishedYes
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: Dec 2 2018Dec 8 2018

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'On the convergence and robustness of training GaNs with regularized optimal transport'. Together they form a unique fingerprint.

Cite this