On the clustering of climate models in ensemble seasonal forecasting

Xing Yuan, Eric F. Wood

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

Multi-model ensemble seasonal forecasting system has expanded in recent years, with a dozen coupled climate models around the world being used to produce hindcasts or real-time forecasts. However, many models are sharing similar atmospheric or oceanic components which may result in similar forecasts. This raises questions of whether the ensemble is over-confident if we treat each model equally, or whether we can obtain an effective subset of models that can retain predictability and skill as well. In this study, we use a hierarchical clustering method based on inverse trigonometric cosine function of the anomaly correlation of pairwise model hindcasts to measure the similarities among twelve American and European seasonal forecast models. Though similarities are found between models sharing the same atmospheric component, different versions of models from the same center sometimes produce quite different temperature forecasts, which indicate that detailed physics packages such as radiation and land surface schemes need to be analyzed in interpreting the clustering result. Uncertainties in clustering for different forecast lead times also make reducing redundant models more complicated. Predictability analysis shows that multi-model ensemble is not necessarily better than a single model, while the cluster ensemble shows consistent improvement against individual models. The eight model-based cluster ensemble forecast shows comparable performance to the total twelve model ensemble in terms of probabilistic forecast skill for accuracy and discrimination. This study also manifests that models developed in U.S. and Europe are more independent from each other, suggesting the necessity of international collaboration in enhancing multi-model ensemble seasonal forecasting. Citation: Yuan, X., and E. F. Wood (2012), On the clustering of climate models in ensemble seasonal forecasting, Geophys. Res. Lett., 39, L18701.

Original languageEnglish (US)
Article numberL18701
JournalGeophysical Research Letters
Volume39
Issue number17
DOIs
StatePublished - Sep 1 2012

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'On the clustering of climate models in ensemble seasonal forecasting'. Together they form a unique fingerprint.

  • Cite this