On the capacity of the interference channel with a relay

Ivana Marié, Ron Dabora, Andrea Goldsmith

Research output: Chapter in Book/Report/Conference proceedingConference contribution

72 Scopus citations


Capacity gains due to relaying in wireless networks with multiple source-destination pairs are analyzed. A twosource, two-receiver network with the relay is considered. The focus is on the scenario in which, due to channel conditions, the relay can observe the signal from only one source. The relay can thus help the intended receiver of this message, via message forwarding, to decode it. In addition, the relay can simultaneously help the unintended receiver subtract the interference associated with this message. We call the latter strategy interference forwarding. An achievable rate region employing decode-andforward (that simultaneously does message and interference forwarding) at the relay is derived and analyzed. This strategy is shown to achieve the capacity region under certain conditions. Our results demonstrate that the relay can help both receivers, despite the fact that it forwards only the message intended for one of them. This applies in general to communications in the presence of an interferer transmitting at any arbitrary rate. Interference forwarding improves reception of interfering signals at the receivers. This facilitates decoding of the unwanted messages and eliminating the resulting interference. Therefore, in networks with multiple source-destination pairs, in addition to relaying messages, interference forwarding may also be employed to help in combating interference.

Original languageEnglish (US)
Title of host publicationProceedings - 2008 IEEE International Symposium on Information Theory, ISIT 2008
Number of pages5
StatePublished - 2008
Externally publishedYes
Event2008 IEEE International Symposium on Information Theory, ISIT 2008 - Toronto, ON, Canada
Duration: Jul 6 2008Jul 11 2008

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8101


Other2008 IEEE International Symposium on Information Theory, ISIT 2008
CityToronto, ON

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'On the capacity of the interference channel with a relay'. Together they form a unique fingerprint.

Cite this