On the burning characteristics of collision-generated water/hexadecane droplets

C. H. Wang, C. Z. Lin, W. G. Hung, W. C. Huang, Chung King Law

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The combustion characteristics of freely falling droplets, individually generated by the merging of colliding water and hexadecane droplets, were investigated and compared with those for pure hexadecane and emulsified water/hexahexadecane droplets. The merging of the nominally nonmiscible hexadecane and water was manifested either in an apparently adhesive manner, or with the water droplet inserting into the hexadecane droplet. The latter, however, is the prevalent mode in hot environments and/or for droplet burning, provided the water volume fraction is less than 0.54 so it can be completely covered by hexadecane. Results on the combustion characteristics show that the ignition delay increases with increasing water content; that for the same droplet size it varies with tig (hexadecane) > tig (collision-generated) > tig (emulsion); that the flame characteristics, including its color, were not affected by the water content; that droplet burning was terminated with either complete combustion, extinction, or microexplosion; and that the droplet volume at microexplosion is almost the same as the initial volume of water in the merged droplet. These results, together with considerations of the limit of superheat of water and the attainable droplet temperature, suggest that hexadecane was the primary and possibly only component undergoing gasification and subsequently combustion prior to the occurrence of microexplosion, and that microexplosion was predominantly induced by flash vaporization of the superheated water when it was exposed to the gaseous environment upon the near-complete gasification of the enveloping hexadecane component, instead of through homogeneous nucleation of the water component when it was still enveloped by hexadecane. With the aid of microexplosion, the effective burning rate Keff increased with increasing water content and for a given droplet size exhibited the ranking Keff (collision-generated) < Keff (emulsion) < Keff (hexadecane). The role of the air bubbles entrapped upon coalescence of the colliding droplets in facilitating microexplosion is also discussed.

Original languageEnglish (US)
Pages (from-to)71-93
Number of pages23
JournalCombustion science and technology
Volume176
Issue number1
DOIs
StatePublished - Jan 2004

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy

Keywords

  • Droplet collision
  • Microexplosion

Fingerprint

Dive into the research topics of 'On the burning characteristics of collision-generated water/hexadecane droplets'. Together they form a unique fingerprint.

Cite this