## Abstract

We study inviscid limits of invariant measures for the 2D stochastic Navier–Stokes equations. As shown by Kuksin (J Stat Phys 115(1–2):469–492, 2004), the noise scaling $${\sqrt{\nu}}$$ν is the only one which leads to non-trivial limiting measures, which are invariant for the 2D Euler equations. Using a Moser-type iteration for stochastic drift-diffusion equations, we show that any limiting measure $${\mu_{0}}$$μ0 is in fact supported on bounded vorticities. Relationships of $${\mu_{0}}$$μ0 to the long term dynamics of 2D Euler in $${L^{\infty}}$$^{L∞} with the weak^{*} topology are discussed. We also obtain a drift-independent modulus of continuity for a stationary deterministic model problem, which leads us to conjecture that in fact $${\mu_0}$$μ0 is supported on $${C^0}$$^{C0}. Moreover, in view of the Batchelor–Krainchnan 2D turbulence theory, we consider inviscid limits for a weakly damped stochastic Navier–Stokes equation. In this setting we show that only an order zero noise scaling (with respect to ν) leads to a nontrivial limiting measure in the inviscid limit.

Original language | English (US) |
---|---|

Pages (from-to) | 619-649 |

Number of pages | 31 |

Journal | Archive for Rational Mechanics and Analysis |

Volume | 217 |

Issue number | 2 |

DOIs | |

State | Published - Aug 10 2015 |

## All Science Journal Classification (ASJC) codes

- Analysis
- Mathematics (miscellaneous)
- Mechanical Engineering