Abstract
Owing to the special structure of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC), the associated capacity region computation and beamforming optimization problems are typically non-convex, and thus cannot be solved directly. One feasible approach is to consider the respective dual multiple-access channel (MAC) problems, which are easier to deal with due to their convexity properties. The conventional BC-MAC duality has been established via BC-MAC signal transformation, and is applicable only for the case in which the MIMO BC is subject to a single transmit sum-power constraint. An alternative approach is based on minimax duality, which can be applied to the case of the sum-power constraint or per-antenna power constraint. In this paper, the conventional BC-MAC duality is extended to the general linear transmit covariance constraint (LTCC) case, which includes sum-power and per-antenna power constraints as special cases. The obtained general BC-MAC duality is applied to solve the capacity region computation for the MIMO BC and beamforming optimization for the multiple-input single-output (MISO) BC, respectively, with multiple LTCCs. The relationship between this new general BC-MAC duality and the minimax duality is also discussed, and it is shown that the general BC-MAC duality leads to simpler problem formulations. Moreover, the general BC-MAC duality is extended to deal with the case of nonlinear transmit covariance constraints in the MIMO BC.
Original language | English (US) |
---|---|
Article number | 6169204 |
Pages (from-to) | 2064-2078 |
Number of pages | 15 |
Journal | IEEE Transactions on Information Theory |
Volume | 58 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2012 |
All Science Journal Classification (ASJC) codes
- Information Systems
- Computer Science Applications
- Library and Information Sciences
Keywords
- Beamforming
- broadcast channels
- multiple antennas
- wireless systems