On ELFs, deterministic encryption, and correlated-input security

Mark Zhandry

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

We construct deterministic public key encryption secure for any constant number of arbitrarily correlated computationally unpredictable messages. Prior works required either random oracles or non-standard knowledge assumptions. In contrast, our constructions are based on the exponential hardness of DDH, which is plausible in elliptic curve groups. Our central tool is a new trapdoored extremely lossy function, which modifies extremely lossy functions by adding a trapdoor.

Original languageEnglish (US)
Title of host publicationAdvances in Cryptology – EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
EditorsYuval Ishai, Vincent Rijmen
PublisherSpringer Verlag
Pages3-32
Number of pages30
ISBN (Print)9783030176587
DOIs
StatePublished - 2019
Event38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Eurocrypt 2019 - Darmstadt, Germany
Duration: May 19 2019May 23 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11478 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Eurocrypt 2019
Country/TerritoryGermany
CityDarmstadt
Period5/19/195/23/19

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'On ELFs, deterministic encryption, and correlated-input security'. Together they form a unique fingerprint.

Cite this