On Compositions of Transformations in Contrastive Self-Supervised Learning

Mandela Patrick, Yuki M. Asano, Polina Kuznetsova, Ruth Fong, João F. Henriques, Geoffrey Zweig, Andrea Vedaldi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the image domain, excellent representations can be learned by inducing invariance to content-preserving transformations via noise contrastive learning. In this paper, we generalize contrastive learning to a wider set of transformations, and their compositions, for which either invariance or distinctiveness is sought. We show that it is not immediately obvious how existing methods such as SimCLR can be extended to do so. Instead, we introduce a number of formal requirements that all contrastive formulations must satisfy, and propose a practical construction which satisfies these requirements. In order to maximise the reach of this analysis, we express all components of noise contrastive formulations as the choice of certain generalized transformations of the data (GDTs), including data sampling. We then consider videos as an example of data in which a large variety of transformations are applicable, accounting for the extra modalities - for which we analyze audio and text - and the dimension of time. We find that being invariant to certain transformations and distinctive to others is critical to learning effective video representations, improving the state-of-the-art for multiple benchmarks by a large margin, and even surpassing supervised pretraining. Code and pretrained models are available.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9557-9567
Number of pages11
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'On Compositions of Transformations in Contrastive Self-Supervised Learning'. Together they form a unique fingerprint.

Cite this