Abstract
In offline RL, we have no opportunity to explore so we must make assumptions that the data is sufficient to guide picking a good policy, and we want to make these assumptions as harmless as possible. In this work, we propose value-based algorithms for offline RL with PAC guarantees under just partial coverage, specifically, coverage of just a single comparator policy, and realizability of the soft (entropy-regularized) Q-function of the single policy and a related function defined as a saddle point of certain minimax optimization problem. This offers refined and generally more lax conditions for offline RL. We further show an analogous result for vanilla Q-functions under a soft margin condition. To attain these guarantees, we leverage novel minimax learning algorithms and analyses to accurately estimate either soft or vanilla Q-functions with strong L2-convergence guarantees. Our algorithms' loss functions arise from casting the estimation problems as nonlinear convex optimization problems and Lagrangifying. Surprisingly we handle partial coverage even without explicitly enforcing pessimism.
| Original language | English (US) |
|---|---|
| Journal | Advances in Neural Information Processing Systems |
| Volume | 36 |
| State | Published - 2023 |
| Event | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States Duration: Dec 10 2023 → Dec 16 2023 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing