Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: Insights from Earth System models

L. Bopp, Laure Resplandy, A. Untersee, P. Le Mezo, M. Kageyama

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural shortterm variability, as well as data andmodel estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled shortterm natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

Original languageEnglish (US)
Article number20160323
JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume375
Issue number2102
DOIs
StatePublished - Sep 13 2017

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Keywords

  • Earth System modelling
  • Last Glacial Maximum and future projections
  • Ocean deoxygenation

Fingerprint Dive into the research topics of 'Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: Insights from Earth System models'. Together they form a unique fingerprint.

Cite this