Oblique: Accelerating page loads using symbolic execution

Ronny Ko, James Mickens, Blake Loring, Ravi Netravali

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Mobile devices are often stuck behind high-latency links. Unfortunately for mobile browsers, latency (not bandwidth) is often the key influence on page load time. Proxy-based web accelerators hide last-mile latency by analyzing a page's content, and informing clients about useful objects to prefetch. However, most accelerators require content providers to divulge cleartext HTTPS data to third-party analysis servers. Acceleration systems can be installed on first-party web servers, avoiding the violation of end-to-end TLS security; however, due to the administrative overhead (and additional VM costs) associated with running an accelerator, many first-party content providers would prefer to outsource the acceleration work-if outsourcing could be secure. In this paper, we introduce Oblique, a third-party web accelerator which enables secure outsourcing of page analysis. Oblique symbolically executes the client-side of a page load, generating a prefetch list of symbolic URLs. Each symbolic URL describes a URL that a client browser should fetch, given user-specific values for cookies, the User-Agent string, and other sensitive variables. Those sensitive values are never revealed to Oblique's analysis server. Instead, during a real page load, the user's browser concretizes URLs by reading sensitive local state; the browser can then prefetch the associated objects. Experiments involving real sites demonstrate that Oblique preserves TLS integrity while providing faster page loads than state-of-the-art accelerators. For popular sites, Oblique is also financially cheaper in terms of VM costs.

Original languageEnglish (US)
Title of host publicationProceedings of the 18th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2021
PublisherUSENIX Association
Pages289-302
Number of pages14
ISBN (Electronic)9781939133212
StatePublished - 2021
Externally publishedYes
Event18th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2021 - Virtual, Online
Duration: Apr 12 2021Apr 14 2021

Publication series

NameProceedings of the 18th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2021

Conference

Conference18th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2021
CityVirtual, Online
Period4/12/214/14/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Oblique: Accelerating page loads using symbolic execution'. Together they form a unique fingerprint.

Cite this