Numerical simulations of cool flame propagation limits and speeds at elevated pressures

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


The propagation speeds and flammability limits of cool flames are numerically simulated at elevated pressures and with dilutions for dimethyl ether mixtures. The results showed that there are three different flame regimes, hot flame, double flame, and cool flame. The cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits of hot flames. Pressure and dilution have a significant impact on the flame speed, flammable limit, and structure of cool flames. On the fuel lean side, the cool flame propagation speed decreases significantly with pressure. However, the cool flame speed on the fuel rich side is much less affected by the pressure. At a lower pressure, the transition from hot flame to cool flame is an extinction transition at the hot flame flammability limit. However, at high pressure, due to the increase of fuel reactivity and the decrease of flame speed of cool flames, it is found that there is a direct transition between cool flame and hot flame without an extinction limit. A K-shaped flammability diagram including both cool flames and hot flames is obtained. Moreover, it is also found that the increase nitrogen dilution in oxidizer dramatically narrows the flammable region of hot flame but extends the flammable region of cool flames. The present study demonstrates that cool flame dynamics needs to be appropriately included for modeling high pressure and near limit combustion of gasoline, diesel, and jet fuels in advanced engines.

Original languageEnglish (US)
Title of host publication54th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624103933
StatePublished - 2016
Event54th AIAA Aerospace Sciences Meeting, 2016 - San Diego, United States
Duration: Jan 4 2016Jan 8 2016

Publication series

Name54th AIAA Aerospace Sciences Meeting


Other54th AIAA Aerospace Sciences Meeting, 2016
Country/TerritoryUnited States
CitySan Diego

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering


Dive into the research topics of 'Numerical simulations of cool flame propagation limits and speeds at elevated pressures'. Together they form a unique fingerprint.

Cite this