Abstract
We present results of a numerical renormalization-group study of the isotropic S=1 Heisenberg chain. The density-matrix renormalization-group techniques used allow us to calculate a variety of properties of the chain with unprecedented accuracy. The ground-state energy per site of the infinite chain is found to be e0-1.401 484 038 971(4). Open-ended S=1 chains have effective S=1/2 spins on each end, with exponential decay of the local spin moment away from the ends, with decay length 6.03(1). The spin-spin correlation function also decays exponentially, and although the correlation length cannot be measured as accurately as the open-end decay length, it appears that the two lengths are identical. The string correlation function shows long-range order, with g()-0.374 325 096(2). The excitation energy of the first excited state, a state with one magnon with momentum q=, is the Haldane gap, which we find to be 0.410 50(2). We find many low-lying excited states, including one- and two-magnon states, for several different chain lengths. The magnons have spin S=1, so the two-magnon states are singlets (S=0), triplets (S=1), and quintuplets (S=2). For magnons with momenta near, the magnon-magnon interaction in the triplet channel is shown to be attractive, while in the singlet and quintuplet channels it is repulsive.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 3844-3852 |
| Number of pages | 9 |
| Journal | Physical Review B |
| Volume | 48 |
| Issue number | 6 |
| DOIs | |
| State | Published - 1993 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics