Numerical analysis of combustion around a strut in supersonic airflow

Ryojiro Minato, Yiguang Ju, Takashi Niioka

Research output: Contribution to journalArticle

Abstract

Numerical simulation of combustion around a strut in supersonic airflow at Mach 1.5 was conducted. In previous papers, experimental results on flame-holding characteristics have been shown for the strut divided into two parts, indicating the effectiveness of the flame-holding characteristics of this strut. Stable flame-holding is due to a comparatively long residence time in the subsonic flow region between the two parts of the strut. The present study is analytical evidence of the stable flame-holding of this strut. The Stahl and Warnatz's detailed chemistry of hydrogen/oxygen reactions and the Baldwin Lomax turbulence algebraic model were employed to simulate the chemical reaction and turbulent flow, respectively. Flame structures such as distributions of chemical species and temperature were obtained. For example, the predicted density distributions explicitly showed an attached shock wave, expansion fans and shear layers, and had good agreement with the shadowgraph of the experiment. The overall equivalence ratio in the space between two strut parts was calculated to evaluate the reaction time in the space, between the struts and a particle trace analysis was performed to evaluate the residence time in the space. By obtaining the Damkohler number from two characteristic times, two flame-holding limits, namely the chemical kinetic limit at small interval between two struts and the dynamic limit at large interval, were discussed. The numerical results were qualitatively consistent with the previous experimental results.

Original languageEnglish (US)
Pages (from-to)143-148
Number of pages6
JournalTransactions of the Japan Society for Aeronautical and Space Sciences
Volume43
Issue number141
DOIs
StatePublished - Nov 2000
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Numerical analysis of combustion around a strut in supersonic airflow'. Together they form a unique fingerprint.

  • Cite this