Abstract
This paper discusses a system for Titan exploration enabled by nuclear fusion power. Titan is one of the most interesting locations in the solar system with a thick atmosphere, surface oceans, under-ice oceans and complex terrain. This paper provides a conceptual design of a fusion-powered system to explore many parts of Titan and enable the use of high-power instruments. The design includes a fusion-powered orbital transfer vehicle and an electric Titan science aircraft. A Direct Fusion Drive (DFD) propulsive engine could bring a sizable spacecraft to Titan orbit in less than two years. A second fusion reactor, configured as a closed-loop power generator, would be used for an electric Titan science aircraft. Both reactors are based on the Princeton Field-Reversed Configuration (PFRC) concept which combines an FRC with a magnetic mirror. PFRC uses a novel radio-frequency plasma heating system and deuterium-helium-3 fuel. A lower temperature plasma flows around the closed-field FRC region removing the fusion products. In the DFD propulsive configuration, this secondary flow permits direct and variable thrust and exhaust velocity. The science aircraft would do a powered entry to Titan and then have the capability to fly anywhere on the moon at subsonic speeds. The DFD-powered transfer vehicle would allow the in-orbit transfer stage to change inclination as needed to cover different areas of the surface.
Original language | English (US) |
---|---|
Pages (from-to) | 82-94 |
Number of pages | 13 |
Journal | Acta Astronautica |
Volume | 210 |
DOIs | |
State | Published - Sep 2023 |
All Science Journal Classification (ASJC) codes
- Aerospace Engineering
Keywords
- Aircraft
- Fusion propulsion
- Mars
- Nuclear propulsion
- Space power
- Titan