TY - JOUR
T1 - Novel ground-state crystals with controlled vacancy concentrations
T2 - From kagomé to honeycomb to stripes
AU - Batten, Robert D.
AU - Huse, David A.
AU - Stillinger, Frank H.
AU - Torquato, Salvatore
PY - 2011/7/7
Y1 - 2011/7/7
N2 - We introduce a one-parameter family, 0 ≤ H ≤ 1, of pair potential functions that stabilize a range of vacancy-riddled crystals as ground states. The "quintic potential" is a short-ranged, nonnegative pair potential with a single local minimum of height H at unit distance and which vanishes cubically at a distance of. We have developed this potential to produce ground states with the symmetry of the triangular lattice while favoring the presence of vacancies. After an exhaustive search using various optimization and simulation methods, we believe that we have determined the ground states for all pressures, densities, and 0 ≤ H ≤1. For specific areas below, the ground states of the "quintic potential" include high-density and low-density triangular lattices, kagomé and honeycomb crystals, and stripes. We find that these ground states are mechanically stable but are difficult to self-assemble in computer simulations without defects. For specific areas above, these systems have a ground-state phase diagram that corresponds to hard disks with radius. For the special case of H = 0, a broad range of ground states is available. Analysis of this case suggests that among many ground states, a high-density triangular lattice, low-density triangular lattice, and striped phases have the highest entropy for certain densities. The simplicity of this potential makes it an attractive candidate for experimental realization with application to the development of novel colloidal crystals or photonic materials.
AB - We introduce a one-parameter family, 0 ≤ H ≤ 1, of pair potential functions that stabilize a range of vacancy-riddled crystals as ground states. The "quintic potential" is a short-ranged, nonnegative pair potential with a single local minimum of height H at unit distance and which vanishes cubically at a distance of. We have developed this potential to produce ground states with the symmetry of the triangular lattice while favoring the presence of vacancies. After an exhaustive search using various optimization and simulation methods, we believe that we have determined the ground states for all pressures, densities, and 0 ≤ H ≤1. For specific areas below, the ground states of the "quintic potential" include high-density and low-density triangular lattices, kagomé and honeycomb crystals, and stripes. We find that these ground states are mechanically stable but are difficult to self-assemble in computer simulations without defects. For specific areas above, these systems have a ground-state phase diagram that corresponds to hard disks with radius. For the special case of H = 0, a broad range of ground states is available. Analysis of this case suggests that among many ground states, a high-density triangular lattice, low-density triangular lattice, and striped phases have the highest entropy for certain densities. The simplicity of this potential makes it an attractive candidate for experimental realization with application to the development of novel colloidal crystals or photonic materials.
UR - http://www.scopus.com/inward/record.url?scp=79959515286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959515286&partnerID=8YFLogxK
U2 - 10.1039/c0sm01380c
DO - 10.1039/c0sm01380c
M3 - Article
AN - SCOPUS:79959515286
SN - 1744-683X
VL - 7
SP - 6194
EP - 6204
JO - Soft matter
JF - Soft matter
IS - 13
ER -