NOx emission in a stretched methane air counterflow diffusion flame

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The effect of strain rate on NOx emissions in a methane air counterflow diffusion flame is numerically analyzed with detailed chemistry. First, the kinetic mechanism is revised and tested by introducing ammonia into the fuel. Comparison of the experimental results with the computed results showed that NO formation is well predicted by the present detailed chemistry. NOx formation at high air temperature is then calculated by increasing the strain rate from 10 s-1 to 12 800 s-1. The results showed that NOx emission decreases dramatically with the increase of strain rate and that extinction limit is greatly extended with the increase of air temperature. Furthermore, the sensitivity and production rate analyses are made. Important elementary reactions and formation routes corresponding to NOx emissions at different strain rates are presented and discussed. Comparisons between prompt NOx and thermal NOx are made. Quenches of thermal NOx and NCO and CN recycle routes at high strain rate are identified.

Original languageEnglish (US)
Pages (from-to)2854-2860
Number of pages7
JournalNippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B
Volume62
Issue number599
DOIs
StatePublished - Jan 1 1996

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'NO<sub>x</sub> emission in a stretched methane air counterflow diffusion flame'. Together they form a unique fingerprint.

Cite this