Abstract
We prove that weak solutions of the inviscid SQG equations are not unique, thereby answering Open Problem 11 of De Lellis and Székelyhidi in 2012. Moreover, we also show that weak solutions of the dissipative SQG equation are not unique, even if the fractional dissipation is stronger than the square root of the Laplacian. In view of the results of Marchand in 2008, we establish that for the dissipative SQG equation, weak solutions may be constructed in the same function space both via classical weak compactness arguments and via convex integration.
Original language | English (US) |
---|---|
Pages (from-to) | 1809-1874 |
Number of pages | 66 |
Journal | Communications on Pure and Applied Mathematics |
Volume | 72 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2019 |
All Science Journal Classification (ASJC) codes
- General Mathematics
- Applied Mathematics