Abstract
A recombination and exciton loss mechanism is reported in organic solar cells involving energy transfer between charge transfer (CT) excitons and polarons, impacting photocurrent generation, particularly in the near-infrared where polaronic transitions typically reside. This process sets a low-energy cut-off in the external quantum efficiency spectrum of an excitonic donor/acceptor interface, determined by the low-energy polaron absorption peak and the CT state reorganization energy. Furthermore, this process explains the deviation from unity and bias dependence of the CT state's internal quantum efficiency at low photon energies. This process is demonstrated in a variety of systems and it is hypothesized that CT state to polaron energy transfer recombination may be responsible for a share of nonradiative recombination in all organic photovoltaics and can explain numerous experimentally observed device trends regarding photocurrent generation and energy losses. Overall, this work enhances the understanding of photophysical processes in organic materials and allows the design of systems that can avoid this recombination pathway.
Original language | English (US) |
---|---|
Article number | 2200551 |
Journal | Advanced Energy Materials |
Volume | 12 |
Issue number | 19 |
DOIs | |
State | Published - May 19 2022 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- General Materials Science
Keywords
- Förster energy transfer
- charge-transfer-states
- energy loss
- non-radiative recombination
- organic solar cells
- polarons