Nonlinear ohmic dissipation in axisymmetric DC and RF driven rotating plasmas

J. M. Rax, E. J. Kolmes, I. E. Ochs, N. J. Fisch, R. Gueroult

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

An axisymmetric fully ionized plasma rotates around its axis when a charge separation between magnetic surfaces is produced from DC fields or RF waves. On each magnetic surface, both electrons and ions obey the isorotation law and perform an azimuthal E cross B rotation at the same angular velocity. When Coulomb collisions are taken into account, such a flow displays no Ohmic current short circuiting of the charge separation and thus no linear dissipation. A nonlinear Ohmic response appears when inertial effects are considered, providing a dissipative relaxation of the charge separation between the magnetic surfaces. This nonlinear conductivity results from an interplay between Coriolis, centrifugal, and electron-ion collisional friction forces. This phenomenon is identified, described, and analyzed. In addition, both the quality factor of angular momentum storage and the efficiency of wave driven angular momentum generation are calculated and shown to be independent of the details of the charge separation processes.

Original languageEnglish (US)
Article number012303
JournalPhysics of Plasmas
Volume26
Issue number1
DOIs
StatePublished - Jan 1 2019

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Nonlinear ohmic dissipation in axisymmetric DC and RF driven rotating plasmas'. Together they form a unique fingerprint.

Cite this