Nonintuitive Role of Solid Electrolyte Porosity on Failure

Lin Lin, Abhinand Ayyaswamy, Yanjie Zheng, Austin Fan, Bairav S. Vishnugopi, Partha P. Mukherjee, Kelsey B. Hatzell

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Solid electrolyte failure can occur through a range of different mechanisms. Electrochemical delamination at electrode and electrolyte interfaces is a prominent failure mechanism during high capacity and low N/P operating conditions, and filament formation is prevalent during a high rate and long cycle-life deposition. Interface coherency and the solid electrolyte microstructure both impact the ultimate degradation mode. The solid electrolyte microstructure, described in part by the density, periodicity, and interconnected arrangement of pores, plays a role in failure. Herein, we combine modeling, synchrotron imaging, and electrochemical experiments to systematically understand how densification and processing of solid electrolytes influence filament formation. The work reveals that the density of pores is not correlated with failure. Instead, the periodicity, size, and arrangement of pores is a driver for failure in amorphous solid electrolytes absent of grain boundaries.

Original languageEnglish (US)
Pages (from-to)2387-2393
Number of pages7
JournalACS Energy Letters
Volume9
Issue number5
DOIs
StatePublished - May 10 2024

All Science Journal Classification (ASJC) codes

  • Chemistry (miscellaneous)
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Nonintuitive Role of Solid Electrolyte Porosity on Failure'. Together they form a unique fingerprint.

Cite this