TY - JOUR
T1 - Nonequilibrium Dynamics of Proton-Coupled Electron Transfer in Proton Wires
T2 - Concerted but Asynchronous Mechanisms
AU - Goings, Joshua J.
AU - Hammes-Schiffer, Sharon
N1 - Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/9/23
Y1 - 2020/9/23
N2 - The coupling between electrons and protons and the long-range transport of protons play important roles throughout biology. Biomimetic systems derived from benzimidazole-phenol (BIP) constructs have been designed to undergo proton-coupled electron transfer (PCET) upon electrochemical or photochemical oxidation. Moreover, these systems can transport protons along hydrogen-bonded networks or proton wires through multiproton PCET. Herein, the nonequilibrium dynamics of both single and double proton transfer in BIP molecules initiated by oxidation are investigated with first-principles molecular dynamics simulations. Although these processes are concerted in that no thermodynamically stable intermediate is observed, the simulations predict that they are predominantly asynchronous on the ultrafast time scale. For both systems, the first proton transfer typically occurs ∼100 fs after electron transfer. For the double proton transfer system, typically the second proton transfer occurs hundreds of femtoseconds after the initial proton transfer. A machine learning algorithm was used to identify the key molecular vibrational modes essential for proton transfer: a slow, in-plane bending mode that dominates the overall inner-sphere reorganization, the proton donor-acceptor motion that leads to vibrational coherence, and the faster donor-hydrogen stretching mode. The asynchronous double proton transfer mechanism can be understood in terms of a significant mode corresponding to the two anticorrelated proton donor-acceptor motions, typically decreasing only one donor-acceptor distance at a time. Although these PCET processes appear concerted on the time scale of typical electrochemical experiments, attaching these BIP constructs to photosensitizers may enable the detection of the asynchronicity of the electron and multiple proton transfers with ultrafast two-dimensional spectroscopy. Understanding the fundamental PCET mechanisms at this level will guide the design of PCET systems for catalysis and energy conversion processes.
AB - The coupling between electrons and protons and the long-range transport of protons play important roles throughout biology. Biomimetic systems derived from benzimidazole-phenol (BIP) constructs have been designed to undergo proton-coupled electron transfer (PCET) upon electrochemical or photochemical oxidation. Moreover, these systems can transport protons along hydrogen-bonded networks or proton wires through multiproton PCET. Herein, the nonequilibrium dynamics of both single and double proton transfer in BIP molecules initiated by oxidation are investigated with first-principles molecular dynamics simulations. Although these processes are concerted in that no thermodynamically stable intermediate is observed, the simulations predict that they are predominantly asynchronous on the ultrafast time scale. For both systems, the first proton transfer typically occurs ∼100 fs after electron transfer. For the double proton transfer system, typically the second proton transfer occurs hundreds of femtoseconds after the initial proton transfer. A machine learning algorithm was used to identify the key molecular vibrational modes essential for proton transfer: a slow, in-plane bending mode that dominates the overall inner-sphere reorganization, the proton donor-acceptor motion that leads to vibrational coherence, and the faster donor-hydrogen stretching mode. The asynchronous double proton transfer mechanism can be understood in terms of a significant mode corresponding to the two anticorrelated proton donor-acceptor motions, typically decreasing only one donor-acceptor distance at a time. Although these PCET processes appear concerted on the time scale of typical electrochemical experiments, attaching these BIP constructs to photosensitizers may enable the detection of the asynchronicity of the electron and multiple proton transfers with ultrafast two-dimensional spectroscopy. Understanding the fundamental PCET mechanisms at this level will guide the design of PCET systems for catalysis and energy conversion processes.
UR - http://www.scopus.com/inward/record.url?scp=85091952181&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091952181&partnerID=8YFLogxK
U2 - 10.1021/acscentsci.0c00756
DO - 10.1021/acscentsci.0c00756
M3 - Article
C2 - 32999935
AN - SCOPUS:85091952181
SN - 2374-7943
VL - 6
SP - 1594
EP - 1601
JO - ACS Central Science
JF - ACS Central Science
IS - 9
ER -