Nonbacktracking bounds on the influence in independent cascade models

Emmanuel Abbe, Sanjeev Kulkarni, Eun Jee Lee

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations


This paper develops upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit nonbacktracking walks, Fortuin-Kasteleyn-Ginibre type inequalities, and are computed by message passing algorithms. Nonbacktracking walks have recently allowed for headways in community detection, and this paper shows that their use can also impact the influence computation. Further, we provide parameterized versions of the bounds that control the trade-off between the efficiency and the accuracy. Finally, the tightness of the bounds is illustrated with simulations on various network models.

Original languageEnglish (US)
Pages (from-to)1408-1417
Number of pages10
JournalAdvances in Neural Information Processing Systems
StatePublished - 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Nonbacktracking bounds on the influence in independent cascade models'. Together they form a unique fingerprint.

Cite this