Nonadiabatic Dynamics of Hydrogen Tunneling with Nuclear-Electronic Orbital Multistate Density Functional Theory

Qi Yu, Saswata Roy, Sharon Hammes-Schiffer

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Proton transfer reactions play a critical role in many chemical and biological processes. The development of computationally efficient approaches to describe the quantum dynamics of proton transfer, which often involves hydrogen tunneling, is challenging. Herein, the nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) method is combined with both Ehrenfest and surface hopping nonadiabatic dynamics methods to describe hydrogen tunneling. The NEO-MSDFT method treats the transferring hydrogen nucleus quantum mechanically on the same level as the electrons and incorporates both static and dynamical correlation by mixing localized NEO-DFT solutions with a nonorthogonal configuration interaction scheme. The other nuclei are propagated on the NEO-MSDFT vibronic surfaces during the Ehrenfest or surface hopping dynamics. These methods are applied to proton transfer in malonaldehyde as a prototypical hydrogen tunneling system. The inclusion of vibronically nonadiabatic effects is found to significantly impact the proton transfer time and tunneling dynamics. This approach is applicable to a wide range of other proton transfer reactions.

Original languageEnglish (US)
Pages (from-to)7132-7141
Number of pages10
JournalJournal of Chemical Theory and Computation
Volume18
Issue number12
DOIs
StatePublished - Dec 13 2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Nonadiabatic Dynamics of Hydrogen Tunneling with Nuclear-Electronic Orbital Multistate Density Functional Theory'. Together they form a unique fingerprint.

Cite this