Abstract
A non-thermal mechanism of weak microwave field impact on a nerve fiber is proposed. It is shown that in the range of about 30-300 GHz, there are strongly pronounced resonances associated with the excitation of ultrasonic vibrations in the membrane as a result of interaction with electromagnetic radiation. The viscous dissipation limits the resonances and results in their broadening. These forced vibrations create acoustic pressure, which may lead to the redistribution of the protein transmembrane channels, and thus changing the threshold of the action potential excitation in the axons of the neural network. The influence of the electromagnetic microwave radiation on various specific areas of myelin nerve fibers was analyzed: the nodes of Ranvier, and the initial segment - the area between the neuron hillock and the first part of the axon covered with the myelin layer. It was shown that the initial segment is the most sensitive area of the myelined neurons from which the action potential normally starts.
Original language | English (US) |
---|---|
Article number | 104701 |
Journal | Journal of Applied Physics |
Volume | 114 |
Issue number | 10 |
DOIs | |
State | Published - Sep 14 2013 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy