Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry

Lukas Käll, John D. Storey, William Stafford Noble

Research output: Contribution to journalArticlepeer-review

123 Scopus citations

Abstract

Motivation: A mass spectrum produced via tandem mass spectrometry can be tentatively matched to a peptide sequence via database search. Here, we address the problem of assigning a posterior error probability (PEP) to a given peptide-spectrum match (PSM). This problem is considerably more difficult than the related problem of estimating the error rate associated with a large collection of PSMs. Existing methods for estimating PEPs rely on a parametric or semiparametric model of the underlying score distribution. Results: We demonstrate how to apply non-parametric logistic regression to this problem. The method makes no explicit assumptions about the form of the underlying score distribution; instead, the method relies upon decoy PSMs, produced by searching the spectra against a decoy sequence database, to provide a model of the null score distribution. We show that our non-parametric logistic regression method produces accurate PEP estimates for six different commonly used PSM score functions. In particular, the estimates produced by our method are comparable in accuracy to those of PeptideProphet, which uses a parametric or semiparametric model designed specifically to work with SEQUEST. The advantage of the non-parametric approach is applicability and robustness to new score functions and new types of data.

Original languageEnglish (US)
Pages (from-to)i42-i48
JournalBioinformatics
Volume24
Issue number16
DOIs
StatePublished - Aug 2008

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Molecular Biology
  • Biochemistry
  • Statistics and Probability
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry'. Together they form a unique fingerprint.

Cite this