Non-coherent multiple-symbol detection for diffusive molecular communications

Vahid Jamali, Nariman Farsad, Robert Schober, Andrea Goldsmith

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

Most of the available works on molecular communication (MC) assume that the channel state information (CSI) is perfectly known at the receiver for data detection. In contrast, in this paper, we study non-coherent multiple-symbol detection schemes which do not require knowledge of the CSI. In particular, we derive the optimal maximum likelihood (ML) multiple-symbol (MLMS) detector. Moreover, we propose an approximated detection metric and a suboptimal detector to cope with the high complexity of the optimal MLMS detector. Numerical results reveal the effectiveness of the proposed optimal and suboptimal detection schemes with respect to a baseline scheme which assumes perfect CSI knowledge, particularly when the number of observations used for detection is sufficiently large.

Original languageEnglish (US)
Title of host publicationProceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, ACM NANOCOM 2016
PublisherAssociation for Computing Machinery, Inc
ISBN (Electronic)9781450340618
DOIs
StatePublished - Sep 28 2016
Externally publishedYes
Event3rd ACM International Conference on Nanoscale Computing and Communication, ACM NANOCOM 2016 - New York, United States
Duration: Sep 28 2016Sep 30 2016

Publication series

NameProceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, ACM NANOCOM 2016

Other

Other3rd ACM International Conference on Nanoscale Computing and Communication, ACM NANOCOM 2016
Country/TerritoryUnited States
CityNew York
Period9/28/169/30/16

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Communication
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Non-coherent multiple-symbol detection for diffusive molecular communications'. Together they form a unique fingerprint.

Cite this