TY - JOUR
T1 - Non-coalescence of oppositely charged drops
AU - Ristenpart, W. D.
AU - Bird, J. C.
AU - Belmonte, A.
AU - Dollar, F.
AU - Stone, Howard A.
N1 - Funding Information:
Acknowledgements We thank M. Poitzsch and M. Sullivan at the Schlumberger-Doll Research Center for supplying samples of crude oil, C. Holtze, T. Schneider and D. A. Weitz for feedback and the Harvard Nanoscale Science and Engineering Center for support. A.B. acknowledges support from Harvard University’s MRSEC.
PY - 2009/9/17
Y1 - 2009/9/17
N2 - Electric fields induce motion in many fluid systems, including polymer melts, surfactant micelles and colloidal suspensions. Likewise, electric fields can be used to move liquid drops. Electrically induced droplet motion manifests itself in processes as diverse as storm cloud formation, commercial ink-jet printing, petroleum and vegetable oil dehydration, electrospray ionization for use in mass spectrometry, electrowetting and lab-on-a-chip manipulations. An important issue in practical applications is the tendency for adjacent drops to coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence. Here we report the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to bounce off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction.
AB - Electric fields induce motion in many fluid systems, including polymer melts, surfactant micelles and colloidal suspensions. Likewise, electric fields can be used to move liquid drops. Electrically induced droplet motion manifests itself in processes as diverse as storm cloud formation, commercial ink-jet printing, petroleum and vegetable oil dehydration, electrospray ionization for use in mass spectrometry, electrowetting and lab-on-a-chip manipulations. An important issue in practical applications is the tendency for adjacent drops to coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence. Here we report the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to bounce off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction.
UR - http://www.scopus.com/inward/record.url?scp=70349288031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349288031&partnerID=8YFLogxK
U2 - 10.1038/nature08294
DO - 10.1038/nature08294
M3 - Article
C2 - 19759616
AN - SCOPUS:70349288031
SN - 0028-0836
VL - 461
SP - 377
EP - 380
JO - Nature
JF - Nature
IS - 7262
ER -