TY - JOUR

T1 - New family of tilings of three-dimensional Euclidean space by tetrahedra and octahedra

AU - Conway, John H.

AU - Jiao, Yang

AU - Torquato, Salvatore

PY - 2011/7/5

Y1 - 2011/7/5

N2 - It is well known that two regular tetrahedra can be combined with a single regular octahedron to tile (complete fill) three-dimensional Euclidean space ℝ 3. This structure was called the "octet truss" by Buckminster Fuller. It was believed that such a tiling, which is the Delaunay tessellation of the face-centered cubic (fcc) lattice, and its closely related stacking variants, are the only tessellations of ℝ 3 that involve two different regular polyhedra. Here we identify and analyze a unique family comprised of a noncountably infinite number of periodic tilings of ℝ 3 whose smallest repeat tiling unit consists of one regular octahedron and six smaller regular tetrahedra. We first derive an extreme member of this unique tiling family by showing that the "holes" in the optimal lattice packing of octahedra, obtained by Minkowski over a century ago, are congruent tetrahedra. This tiling has 694 distinct concave (i.e., nonconvex) repeat units, 24 of which possess central symmetry, and hence is distinctly different and combinatorically richer than the fcc tetrahedra-octahedra tiling, which only has two distinct tiling units. Then we construct a one-parameter family of octahedron packings that continuously spans from the fcc to the optimal lattice packing of octahedra. We show that the "holes" in these packings, except for the two extreme cases, are tetrahedra of two sizes, leading to a family of periodic tilings with units composed four small tetrahedra and two large tetrahedra that contact an octahedron. These tilings generally possess 2,068 distinct concave tiling units, 62 of which are centrally symmetric.

AB - It is well known that two regular tetrahedra can be combined with a single regular octahedron to tile (complete fill) three-dimensional Euclidean space ℝ 3. This structure was called the "octet truss" by Buckminster Fuller. It was believed that such a tiling, which is the Delaunay tessellation of the face-centered cubic (fcc) lattice, and its closely related stacking variants, are the only tessellations of ℝ 3 that involve two different regular polyhedra. Here we identify and analyze a unique family comprised of a noncountably infinite number of periodic tilings of ℝ 3 whose smallest repeat tiling unit consists of one regular octahedron and six smaller regular tetrahedra. We first derive an extreme member of this unique tiling family by showing that the "holes" in the optimal lattice packing of octahedra, obtained by Minkowski over a century ago, are congruent tetrahedra. This tiling has 694 distinct concave (i.e., nonconvex) repeat units, 24 of which possess central symmetry, and hence is distinctly different and combinatorically richer than the fcc tetrahedra-octahedra tiling, which only has two distinct tiling units. Then we construct a one-parameter family of octahedron packings that continuously spans from the fcc to the optimal lattice packing of octahedra. We show that the "holes" in these packings, except for the two extreme cases, are tetrahedra of two sizes, leading to a family of periodic tilings with units composed four small tetrahedra and two large tetrahedra that contact an octahedron. These tilings generally possess 2,068 distinct concave tiling units, 62 of which are centrally symmetric.

KW - Nonoverlapping solids

KW - Polytopes

KW - Space-filling

UR - http://www.scopus.com/inward/record.url?scp=79960588076&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79960588076&partnerID=8YFLogxK

U2 - 10.1073/pnas.1105594108

DO - 10.1073/pnas.1105594108

M3 - Article

C2 - 21690370

AN - SCOPUS:79960588076

VL - 108

SP - 11009

EP - 11012

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 27

ER -