New experimental evidence for spin fluctuations in strongly paramagnetic alloys

E. Fawcett, E. Bucher, William F. Brinkman, J. P. Maita, J. H. Wernick

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

According to theoretical predictions, the entropy of spin fluctuations in a paramagnetic metal with Stoner susceptibility enhancement factor S is (omitting numerical coefficients) ΔS/S 0 ≃lnS+S 3 T 2 ln (T/T s ), where S 0 is the entropy of the electrons without spin fluctuations and T s =T Fermi /S. The first term gives rise to an enhancement of the specific heat and the thermal expansion at absolute zero. The second term should cause a low-temperature anomaly in both properties. The enhancement of the specific heat has been reported in NiRh and Pd:Ni alloys, and the NiRh system also shows low-temperature specific-heat anomalies. The thermal expansion α is more sensitive than the specific heat C to each of these contributions, approximately in the ratio Δα/α 0 /ΔC v /C v 0 ≃1/ γ 0 ∂lnS/∂lnV, where γ 0 is the electronic Gruneisen parameter without spin fluctuations. Our magnetostriction data for Pd:Ni and NiRh alloys determines ∂ lnS/∂ lnV, which is proportional to S in accordance with the Stoner expression for the susceptibility. The thermal expansion of the Pd:Ni alloys as temperature approaches zero shows the expected enhancement, and the most strongly enhanced sample shows a low-temperature anomaly. The low-temperature thermal expansion of the NiRh alloys in general increases with Ni concentration, but the behavior is complicated by clustering effects. The ordered intermetallic compound Ni 3 Ga is found to have a large magnetostriction corresponding to its strong exchange enhancement, but as for the disordered alloys, the low-temperature anomaly in its thermal expansion depends upon the annealing treatment.

Original languageEnglish (US)
Pages (from-to)1097-1098
Number of pages2
JournalJournal of Applied Physics
Volume40
Issue number3
DOIs
StatePublished - Dec 1 1969
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'New experimental evidence for spin fluctuations in strongly paramagnetic alloys'. Together they form a unique fingerprint.

  • Cite this