New Approaches for Quantum Copy-Protection

Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, Ruizhe Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

Quantum copy-protection uses the unclonability of quantum states to construct quantum software that provably cannot be pirated. copy-protection would be immensely useful, but unfortunately, little is known about achieving it in general. In this work, we make progress on this goal, by giving the following results: We show how to copy-protect any program that cannot be learned from its input-output behavior relative to a classical oracle. This construction improves on Aaronson (CCC 2009), which achieves the same relative to a quantum oracle. By instantiating the oracle with post-quantum candidate obfuscation schemes, we obtain a heuristic construction of copy-protection.We show, roughly, that any program which can be watermarked can be copy detected, a weaker version of copy-protection that does not prevent copying, but guarantees that any copying can be detected. Our scheme relies on the security of the assumed watermarking, plus the assumed existence of public-key quantum money. Our construction is publicly detectable and applicable to many recent watermarking schemes.

Original languageEnglish (US)
Title of host publicationAdvances in Cryptology – CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Proceedings
EditorsTal Malkin, Chris Peikert
PublisherSpringer Science and Business Media Deutschland GmbH
Pages526-555
Number of pages30
ISBN (Print)9783030842413
DOIs
StatePublished - 2021
Event41st Annual International Cryptology Conference, CRYPTO 2021 - Virtual, Online
Duration: Aug 16 2021Aug 20 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12825 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference41st Annual International Cryptology Conference, CRYPTO 2021
CityVirtual, Online
Period8/16/218/20/21

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'New Approaches for Quantum Copy-Protection'. Together they form a unique fingerprint.

Cite this