Abstract
Filtered two-fluid model (fTFM) for gas-particle flows require closures for the sub-filter scale corrections to interphase drag force and stresses, the former being more significant. In this study, we have formulated a neural-network-based model to predict the sub-grid drift velocity, which is then used to estimate the drag correction. As a part of the neural network model development effort, we derived a transport equation for drift velocity and then performed a budget analysis to conclude that an algebraic model for drift velocity in terms of the filtered variables that are resolved in a fTFM simulation is adequate, and the model should include the filtered gas-phase pressure gradient as a marker in addition to the filtered particle volume fraction and the filtered gas-solid slip velocity. Both a priori and a posteriori analyses reveal that the present model for drift velocity when used in a fTFM simulation is able to capture the fine-grid simulation results quite well.
Original language | English (US) |
---|---|
Pages (from-to) | 403-413 |
Number of pages | 11 |
Journal | Powder Technology |
Volume | 346 |
DOIs | |
State | Published - Mar 15 2019 |
All Science Journal Classification (ASJC) codes
- General Chemical Engineering
Keywords
- Drag force
- Drift velocity
- Filtering approach
- Fluidized bed
- Sub-grid modeling
- Two-fluid model