TY - JOUR

T1 - Neural network approximation

AU - Devore, Ronald

AU - Hanin, Boris

AU - Petrova, Guergana

N1 - Funding Information:
All three authors were supported by MURI grant N00014-20-1-2787, administered through the US Office of Naval Research. RD and GP were supported by NSF grant DMS-1817603, NSF TRIPODS grant CCF-1934904, and BH was supported by NSF grant DMS-1855684.
Publisher Copyright:
© The Author(s), 2021.

PY - 2021/5

Y1 - 2021/5

N2 - Neural networks (NNs) are the method of choice for building learning algorithms. They are now being investigated for other numerical tasks such as solving high-dimensional partial differential equations. Their popularity stems from their empirical success on several challenging learning problems (computer chess/Go, autonomous navigation, face recognition). However, most scholars agree that a convincing theoretical explanation for this success is still lacking. Since these applications revolve around approximating an unknown function from data observations, part of the answer must involve the ability of NNs to produce accurate approximations. This article surveys the known approximation properties of the outputs of NNs with the aim of uncovering the properties that are not present in the more traditional methods of approximation used in numerical analysis, such as approximations using polynomials, wavelets, rational functions and splines. Comparisons are made with traditional approximation methods from the viewpoint of rate distortion, i.e. error versus the number of parameters used to create the approximant. Another major component in the analysis of numerical approximation is the computational time needed to construct the approximation, and this in turn is intimately connected with the stability of the approximation algorithm. So the stability of numerical approximation using NNs is a large part of the analysis put forward. The survey, for the most part, is concerned with NNs using the popular ReLU activation function. In this case the outputs of the NNs are piecewise linear functions on rather complicated partitions of the domain of f into cells that are convex polytopes. When the architecture of the NN is fixed and the parameters are allowed to vary, the set of output functions of the NN is a parametrized nonlinear manifold. It is shown that this manifold has certain space-filling properties leading to an increased ability to approximate (better rate distortion) but at the expense of numerical stability. The space filling creates the challenge to the numerical method of finding best or good parameter choices when trying to approximate.

AB - Neural networks (NNs) are the method of choice for building learning algorithms. They are now being investigated for other numerical tasks such as solving high-dimensional partial differential equations. Their popularity stems from their empirical success on several challenging learning problems (computer chess/Go, autonomous navigation, face recognition). However, most scholars agree that a convincing theoretical explanation for this success is still lacking. Since these applications revolve around approximating an unknown function from data observations, part of the answer must involve the ability of NNs to produce accurate approximations. This article surveys the known approximation properties of the outputs of NNs with the aim of uncovering the properties that are not present in the more traditional methods of approximation used in numerical analysis, such as approximations using polynomials, wavelets, rational functions and splines. Comparisons are made with traditional approximation methods from the viewpoint of rate distortion, i.e. error versus the number of parameters used to create the approximant. Another major component in the analysis of numerical approximation is the computational time needed to construct the approximation, and this in turn is intimately connected with the stability of the approximation algorithm. So the stability of numerical approximation using NNs is a large part of the analysis put forward. The survey, for the most part, is concerned with NNs using the popular ReLU activation function. In this case the outputs of the NNs are piecewise linear functions on rather complicated partitions of the domain of f into cells that are convex polytopes. When the architecture of the NN is fixed and the parameters are allowed to vary, the set of output functions of the NN is a parametrized nonlinear manifold. It is shown that this manifold has certain space-filling properties leading to an increased ability to approximate (better rate distortion) but at the expense of numerical stability. The space filling creates the challenge to the numerical method of finding best or good parameter choices when trying to approximate.

UR - http://www.scopus.com/inward/record.url?scp=85112092488&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85112092488&partnerID=8YFLogxK

U2 - 10.1017/S0962492921000052

DO - 10.1017/S0962492921000052

M3 - Review article

AN - SCOPUS:85112092488

SN - 0962-4929

VL - 30

SP - 327

EP - 444

JO - Acta Numerica

JF - Acta Numerica

ER -