TY - GEN
T1 - Neural characterization in partially observed populations of spiking neurons
AU - Pillow, Jonathan W.
AU - Latham, Peter
PY - 2008
Y1 - 2008
N2 - Point process encoding models provide powerful statistical methods for understanding the responses of neurons to sensory stimuli. Although these models have been successfully applied to neurons in the early sensory pathway, they have fared less well capturing the response properties of neurons in deeper brain areas, owing in part to the fact that they do not take into account multiple stages of processing. Here we introduce a new twist on the point-process modeling approach: we include unobserved as well as observed spiking neurons in a joint encoding model. The resulting model exhibits richer dynamics and more highly nonlinear response properties, making it more powerful and more flexible for fitting neural data. More importantly, it allows us to estimate connectivity patterns among neurons (both observed and unobserved), and may provide insight into how networks process sensory input. We formulate the estimation procedure using variational EM and the wake-sleep algorithm, and illustrate the model's performance using a simulated example network consisting of two coupled neurons.
AB - Point process encoding models provide powerful statistical methods for understanding the responses of neurons to sensory stimuli. Although these models have been successfully applied to neurons in the early sensory pathway, they have fared less well capturing the response properties of neurons in deeper brain areas, owing in part to the fact that they do not take into account multiple stages of processing. Here we introduce a new twist on the point-process modeling approach: we include unobserved as well as observed spiking neurons in a joint encoding model. The resulting model exhibits richer dynamics and more highly nonlinear response properties, making it more powerful and more flexible for fitting neural data. More importantly, it allows us to estimate connectivity patterns among neurons (both observed and unobserved), and may provide insight into how networks process sensory input. We formulate the estimation procedure using variational EM and the wake-sleep algorithm, and illustrate the model's performance using a simulated example network consisting of two coupled neurons.
UR - http://www.scopus.com/inward/record.url?scp=85162072974&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162072974&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85162072974
SN - 160560352X
SN - 9781605603520
T3 - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
BT - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
PB - Neural Information Processing Systems
T2 - 21st Annual Conference on Neural Information Processing Systems, NIPS 2007
Y2 - 3 December 2007 through 6 December 2007
ER -