Neural Auto-Exposure for High-Dynamic Range Object Detection

Emmanuel Onzon, Fahim Mannan, Felix Heide

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

Real-world scenes have a dynamic range of up to 280 dB that todays imaging sensors cannot directly capture. Existing live vision pipelines tackle this fundamental challenge by relying on high dynamic range (HDR) sensors that try to recover HDR images from multiple captures with different exposures. While HDR sensors substantially increase the dynamic range, they are not without disadvantages, including severe artifacts for dynamic scenes, reduced fill-factor, lower resolution, and high sensor cost. At the same time, traditional auto-exposure methods for low-dynamic range sensors have advanced as proprietary methods relying on image statistics separated from downstream vision algorithms. In this work, we revisit auto-exposure control as an alternative to HDR sensors. We propose a neural network for exposure selection that is trained jointly, end-to-end with an object detector and an image signal processing (ISP) pipeline. To this end, we use an HDR dataset for automotive object detection and an HDR training procedure. We validate that the proposed neural auto-exposure control, which is tailored to object detection, outperforms conventional auto-exposure methods by more than 6 points in mean average precision (mAP).

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages7706-7716
Number of pages11
ISBN (Electronic)9781665445092
DOIs
StatePublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: Jun 19 2021Jun 25 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period6/19/216/25/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Neural Auto-Exposure for High-Dynamic Range Object Detection'. Together they form a unique fingerprint.

Cite this