TY - GEN
T1 - Networked Drone Cameras for Sports Streaming
AU - Wang, Xiaoli
AU - Chowdhery, Aakanksha
AU - Chiang, Mung
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/13
Y1 - 2017/7/13
N2 - A network of drone cameras can be deployed to cover live events, such as high-action sports game played on a large field, but managing networked drone cameras in real-time is challenging. Distributed approaches yield suboptimal solutions from lack of coordination but coordination with a centralized controller incurs round-trip latencies of several hundreds of milliseconds over a wireless channel. We propose a fog-networking based system architecture to automatically coordinate a network of drones equipped with cameras to capture and broadcast the dynamically changing scenes of interest in a sports game. We design both optimal and practical algorithms to balance the tradeoff between two metrics: coverage of the most important scenes and streamed video bitrate. To compensate for network round-trip latencies, the centralized controller uses a predictive approach to predict which locations the drones should cover next. The controller maximizes video bitrate by associating each drone to an optimally matched server and dynamically re-assigns drones as relay nodes to boost the throughput in low-throughput scenarios. This dynamic assignment at centralized controller occurs at slower time-scale permitted by round-trip latencies, while the predictive approach and drones' local decision ensures that the system works in real-time. Experimental results over tens of flights on the field suggest our system can achieve really good performance, for example, 8 drones can achieve a tradeoff of 94% coverage and (on average) 2K video support at 20 Mbps by optimizing between coverage and throughput. By dynamically allocating drones to cover the game or act as relays, our system also demonstrates a 2x gain over systems maximizing static coverage alone that achieves only 9 Mbps video throughput.
AB - A network of drone cameras can be deployed to cover live events, such as high-action sports game played on a large field, but managing networked drone cameras in real-time is challenging. Distributed approaches yield suboptimal solutions from lack of coordination but coordination with a centralized controller incurs round-trip latencies of several hundreds of milliseconds over a wireless channel. We propose a fog-networking based system architecture to automatically coordinate a network of drones equipped with cameras to capture and broadcast the dynamically changing scenes of interest in a sports game. We design both optimal and practical algorithms to balance the tradeoff between two metrics: coverage of the most important scenes and streamed video bitrate. To compensate for network round-trip latencies, the centralized controller uses a predictive approach to predict which locations the drones should cover next. The controller maximizes video bitrate by associating each drone to an optimally matched server and dynamically re-assigns drones as relay nodes to boost the throughput in low-throughput scenarios. This dynamic assignment at centralized controller occurs at slower time-scale permitted by round-trip latencies, while the predictive approach and drones' local decision ensures that the system works in real-time. Experimental results over tens of flights on the field suggest our system can achieve really good performance, for example, 8 drones can achieve a tradeoff of 94% coverage and (on average) 2K video support at 20 Mbps by optimizing between coverage and throughput. By dynamically allocating drones to cover the game or act as relays, our system also demonstrates a 2x gain over systems maximizing static coverage alone that achieves only 9 Mbps video throughput.
UR - http://www.scopus.com/inward/record.url?scp=85027279625&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027279625&partnerID=8YFLogxK
U2 - 10.1109/ICDCS.2017.200
DO - 10.1109/ICDCS.2017.200
M3 - Conference contribution
AN - SCOPUS:85027279625
T3 - Proceedings - International Conference on Distributed Computing Systems
SP - 308
EP - 318
BT - Proceedings - IEEE 37th International Conference on Distributed Computing Systems, ICDCS 2017
A2 - Lee, Kisung
A2 - Liu, Ling
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 37th IEEE International Conference on Distributed Computing Systems, ICDCS 2017
Y2 - 5 June 2017 through 8 June 2017
ER -