Abstract
A neptunium analog of the LaFeAsO tetragonal layered compound has been synthesized and characterized by a variety of experimental techniques. The occurrence of long-range magnetic order below a critical temperature T N = 57 K is suggested by anomalies in the temperature-dependent magnetic susceptibility, electrical resistivity, Hall coefficient, and specific-heat curves. Below T N, powder neutron diffraction measurements reveal an antiferromagnetic structure of the Np sublattice, with an ordered magnetic moment of 1.70 ± 0.07μ B aligned along the crystallographic c axis. No magnetic order has been observed on the Fe sublattice, setting an upper limit of about 0.3μ B for the ordered magnetic moment on the iron. High-resolution x-ray powder diffraction measurements exclude the occurrence of lattice transformations down to 5 K, in sharp contrast to the observation of a tetragonal-to-orthorhombic distortion in the rare-earth analogs, which has been associated with the stabilization of a spin-density wave on the iron sublattice. Instead, a significant expansion of the NpFeAsO lattice parameters is observed with decreasing temperature below T N, corresponding to a relative volume change of about 0.2% and to an Invar behavior between 5 and 20 K. First-principles electronic structure calculations based on the local spin density plus Coulomb interaction and the local density plus Hubbard-I approximations provide results in good agreement with the experimental findings.
Original language | English (US) |
---|---|
Article number | 174506 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 85 |
Issue number | 17 |
DOIs | |
State | Published - May 9 2012 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics